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1 Executive summary

Active development proceeded in all of the research topitegor accomplishments include:
1. Development of statistical methodology

e Improved and tested our tempered simulation. Based on sgms with Michael
Lavine, we implemented a generalized concept of “hot” chdiayond powering-up
the posterior distribution.

e Continued development of our hybrid multiple-level MCMCtmedology, benchmark-
ing the strategy for an upcoming methods paper

e Investigated effect of indistinguishability in mixtureroponents on convergence and
bias in posterior distributions
2. Development of persistence technology

e Completed, debugged and tested serialization and persester nearly all BIE meth-
ods.

3. Preparation for final code release

e Continuing to “plug holes” in documentation

¢ Improved reliability of autoconf-based configuration, exddautomatic warnings about
dependencies

e Code sanitized for adherence to ANSI C++ standards, lagrstons of the Boost and
GTK libraries

4. Astronomical applications



¢ Designed tests using a suite of synthetic galaxy imagestoHmark our new GALFIT-
like galaxy image analyzer which we have code-namedRBAT for GALaxy PHo-
tometric ATtributes. We have begun analyzing 2MASS galamsges and have begun
a collaboration with the COSMOS group and have testedrGIAT on their images.

e Using our hybrid simulated tempering—differential evaat MCMC algorithm, we
have achieved convergent posterior distributions for @misanalytic-model (BIE-
SAM) code. We are continuing to augment the problem defmitm include more
complex “real-world” data sets such as Tully-Fisher and Hissdistributions.

e We have completed and tested our color-magnitude diaggerator based on the
most recent isochrone tracks that included the AGB and AG®- stellar evolution
phases. We are beginning our test its performance on sietuéatd 2MASS We may
now make start count predictions along any line of sightg&estar-formation history,
metallicity distribution in space. We will test both our nedénd methodology using
2MASS LMC/SMC data.

2 No-cost extension

Although our award date is March 15, 2006, for some reasonwere not notified until June

2006. We were not able to get a post-doc on-board until thevibhg year, so we requested
an institutional 12 month extension. If possible, | woukklito request an additional six month
extension beyond this point to give the post-doc a full 3 yeard to give us time to finish up the
final publications and code release.

3 Research milestones and summary

| will detail some of the advances below and end with a list @estones for the final period.

1 System development

The implementation of the persistence subsystem is now &eymlocumented, and extensively
tested. We are currently using it in-house for all of our potg and it will be in the final code
release.

We have used the persistence subsystem to implement a éakpbinting scheme. Checkpoint-
ing goes beyond save/restore in that it saves what is happémithemiddle of a Markov chain.
Running these chains is the most time-consuming part ofingrthe BIE, and thus the most vulner-
able to crashes, etc. Checkpointing allows one to resuree aftrash, or if one needed or desired
to abandon a computation for some reason. We can triggekpbieting based on the number of
iterations since the last checkpoint, the amount of time hlaa passed, or upon user request via
typing a certain control character on the console.

In addition, the user may use checkpoint save sets to réwaltate of previous simulation for
future updates based on new data or for model comparisoredexction. For now, storage of save-
sets is the user’s responsibility. However, this impleraganh lays the groundwork for a future
SVN-based data+metadata repository.



Other system developments include generalizing and iscrgdhe interoperability of the class
structure to permit unanticipated future uses.

2 GALPHAT
2.1 Motivation

We had originally intended to use BIE as a back end few &t . GALFIT is a modular pack-
age written to perform two dimensional image decomposition galaxies which are from nearby
to distant (Peng et al. 2002). We found that the pixel intégnaand PSF convolution were too
inaccurate and time-consuming for our application whichessitated our rewriting the model
generation code. We have code-named the new parametemdetigon package @ PHAT for
GALaxy PHotomometric ATtributes. Our combination of thigpaoach with our Bayesian Infer-
ence Engine back end, which will allow GALFIT-based invgations of the full posterior not just
the extremum mode, and will establish proper prior distidns, which allow inferences using
Bayes Factors over a wide variety of competing models andthgses.

As a reminder, our likelihood function is
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P(D|6)= (1)

whereD is data vectolflk x Ny), M(8) is a model vector andV is a weight matrix for pixel
value. Our models include with a mixture of Sérsic profilesersupplied prior for each param-
eter. Each Sérsic profile has 8 free parameters in the fitraidrof the profilekc, yc), integrated
magnitudelo) which is related wittZe, effective radiugg), Sérsic indexy), axis ratiop/a), po-
sition angle(PA) and diskiness/boxinags(n addition, we specify a model for the sky background
with 3 free parameters:sky level, sky gradient in X, Y direct

During the last 12 months, &&£PHAT has been tested using simulated galaxies, incorporating
the advanced features of BIE such hierarchical simulageals, multiple MCMC algorithms and
persistence. We performed more comprehensive tests baseasemble images of single Sérsic
galaxies simulated with different galaxy structural pagéens (magnitude, size, Sérsic index, axis
ratio, position angle). As a function of the signal-to-reoiatio (S/N, using signal and noise within
half-light radius). Figures 1 and 2 show the difference leetwthe input parameters and the output
parameters derived from the whole ensemble of posteridrilaliions. Overall, parameter dis-
persion becomes smaller as S/N increases (see Fig. 1).ishoghy, the dispersion in structural
parameters decreases only slightly with increasing imagge(see Fig. 2). The Sérsic index and
galaxy half-light radius are biased high due to the natur8&sic profile, while magnitude pos-
terior distribution is not skewed. The unchanging 99.7%fid@mce interval is due to the angular
degeneracy for face-on galaxies.

By experimenting with different MCMC algorithms, priorscaproposal widths, we identified
combinations that yielded a robust posterior for 2MASS budgsk decomposition analysis. These
include an observationally motivated non-informativeopfor galaxy half-light radius and assum-
ing a common center for all profiles in the mixture. For linditeumber of test cases, More compre-
hensive tests are ongoing. In addition, we have charaettB¥IASS sample properties by deriving



luminosity function with different measuring techniqueslacomparing with the previously pub-
lished data (Kochanek et al. 2001). Our results are verylainaxcept for slight difference in
normalization, which may be due to differences in sky cogera

3 SAMS-BIE

Galaxy formation and evolution has been one of the most ehgithg problems in astrophysics
owing to the interplay of multiple physical processes ondiyglisparate time and length scales.
Modeling or simulating galaxies from the first principlemspossible currently, semi-analytic mod-
els (SAMs) use phenomenological prescriptions of the m®es too difficult to study from first
principles. By comparing the SAM predictions to observasioresearchers hope to identify the
key processes controlling galaxy formation. SAMs are etitra, and have a remarkable number of
citations, for the following reasons. First, they are bupbn the CDM structure formation frame-
work, proven to be a successful model on cosmological sc8kesond, standard CDM techniques
produce a large sample of galaxies using Monte Carlo metfmdgbservational comparisons.
Third, and most important for its popularity, SAMs have a milawer computational cost than
direct simulation.

Nevertheless, a number of inherent thorny problems in thgga@ach may limit its contribution
to true understanding. Typically in semi-analytic modgJia subset of model parameters are held
fixed while others are adjusted to match observations (eeggalaxy luminosity function or stellar
mass function, the Tully-Fisher relation, and color disition). If the match is unsatisfactory, the
practitioner either further adjusts some of the parametechanges the model until the “best fit”
is achieved. This procedure is flawed for a number of reasons:

1. The goodness of fit is usually assessed “by eye”, and theeagmt between the model
with the observations becomes a subjective proxy for moglecion. There is no attempt
to account for the prior information or the model dimensibnia rejecting competing hy-
potheses.

2. Owing to our lack of first-principle knowledge, the re@pese in a high-dimensional pa-
rameter space. Since some if not all of the parameters amct@to be covariant, the
isosurfaces of the likelihood function are almost certacwmplex and multi-modal. Ex-
ploring this space “by hand” is impossible. The significanta “reasonable” agreement
found after a small number of attempts is impossible to gfyaand the complex likelihood
function produces tremendous difficulty in determining towmprove the agreement of the
model.

3. Giventhe topological complexity of likelihood functiamthe high-dimensional model space,
its restricted variation in a small subset of parametersc(#’) may have little bearing on
the true probability over a properly marginalized disttiba. In other words, because the
influence of any single process is conditional on all the majprocesses in the entire galaxy
formation model, the knowledge of the variation obtainedbjusting a single parameter is
also conditional on the fixed parameters in the model. Inggmed from a particular cut is
therefore likely to be circumstantial rather than inforivat



Probabilistically, the SAM method is a model selection peal Bayesian inference provides
a consistent approach to all of the problems identified abautomatically providing the entire
probability distribution of the parameters. Our goal is pami-analytic modeling on rigorous
probabilistic footing. To incorporate the approach inte framework of Bayesian inference, we
have implemented a SAM that incorporates all of mainstreAM<S This will allow us to compare
with published results and test various proposed parainatens.

3.1 Our SAM

We have implemented recipes for the following processesadintive cooling; 2) star formation;
3) supernova feedback; 4) galaxy mergers; 5) stellar ptipanlaynthesis; and 6) dust extinction.
A flowchart describing the structure of the model is showniguFe 3. The parameters are summa-
rized in the Table 1. Our fiducial model is a restriction to i&efparameters, since the remainder
do not influence our prediction of the stellar mass functieor. each parameter, we choose a prior
distribution that brackets the values that other group® lelopted and as required for physical
consistency. Figure 4 outlines the computation, typicainokt Bayesian posterior simulations:
the MCMC algorithm provides proposal parameter vectorstier SAM, and the SAM predicts
the galaxy populations using the parameter set. The li@etihis evaluated by comparing the pre-
dictions with the observations, and is returned to the MCM@&cedure. The converged posterior
samples contain the full probability distribution of the debparameters for the given observational
data.

Using the Bayesian approach, we expect to fully investitfegosterior probability distribution
of the model for given observations. First, we should be &bleyout the degeneracy between
parameters if it exist. Second, we can marginalize the patensthat we are not interested in and
sketch the probability distribution of the model paramgtefhird, we can integral the posterior
probability over the entire parameter space to derive thy@B8éactor to test one hypothesis against
another.

3.2 Example: the stellar mass function

We simplify the problem by assuming the error in each steflass bin is independent. A paper
in preparation describes the effected of correlated ematetail. With this simplification, the
likelihood is written as

(2)
20%obs

L(Pong0) = LOeXp{— Z

(log®; obs— 109 Dj mod)? }

wherelg is an arbitrary normalization factoR; ons and®; meq are the stellar mass functions of the
ith bin from observation and the model (resp.) for a givenipatar seb, ando; opsis the variance
of the observed logarithmic stellar mass function. Sinaertodel variance is smaller than the
data variance as we tested using different merger tree wetggnore the model variance in the
likelihood.
We now describe the results of three example inferenceselfirst, Model 0, we adopt weakly

informative priors for all the 13 parameters; in the second,®odel 1, we adopt narrow priors to
some of the parameters; in the third, Model 2, we furtherictghe prior distributions to reproduce



Table 1: Model parameters

# Parameter Meaning Prior Posterior
[15,45] [2.01, 2.97][3.27, 4.47]
1 logMcc(Me) cooling cut-off halo mass [1.5,4.5] [3.15, 4.47]
[15,45] [1.95,2.37]
[-3,0] [-2.31,-0.150]
2 logage star formation efficiency power-law amplitude [-3,0] [-8,21.83]
[-3,0] [-1.71,-0.870]
[-1,12] [-0.870, 10.6]
3 Bs star formation efficiency power-law index [-0.2,0.2] [-p@2]
[-0.2,0.2] [-0.2,0.2]
[1.5,3.0] [1.52,2.54]
4 logVge (km/s) star formation law turn-over halo circular velocity [2.1,2.3] [2.1,2.3]
[2.1,2.3] [2.1,2.3]
[-2,2] [-1.88,1.96]
5 logZge ( M«;\,/pcz) star formation threshold gas surface density [0.8,1.2] 8,[0.2]
[0.8,1.2] [0.8,1.2]
[-3,1] [-2.96, -0.720] [-0.400, 0.960]
6 logagy SN feedback energy fraction [-3,1] [0.160, 0.960]
[-3,1] [-1.04, -0.320]
[4,2] [3.94,1.34]
7 logary SN feedback reheating power-law amplitude [-4,2] [-2.@2820]
[-4,2] [0.260, 1.22] [1.70, 1.94]
[0,12] [0.360, 11.6]
8 BrH SN feedback reheating power-law index [0, 12] [6.60, 10.4]
[-0.2,0.2] [-0.2,0.2]
[3,0] [2.97,-0.210]
9 logew fraction of SN feedback energy used for powering wind [-3,0] [-2.97,-1.35]
[-3,0] [-0.270, -0.0300]
[-3,0] [-2.97,-0.0300]
10 logfri fraction of re-infall ejected hot gas [-3,0] [-2.97,-0.@30
[-3,0] [-2.97, -0.630]
[-2,2] [0.520, 1.96]
11 logfpr merging time-scale in dynamical friction time-scale [-P, 2 [0.840, 1.96]
[-2,2] [-1.96, -0.520]
[-3,0] [-2.97,-0.0300]
12 logags merger triggered star burst efficiency power-law amplitude [-3, 0] [-2.97, -0.0900]
[-3,0] [-2.97, -0.150]
[0,2] [0.0200, 1.94]
13 Bss merger triggered star burst efficiency power-law index Io, 2 [0.020, 1.98]
[0, 2] [0.020, 1.98]
14 agy (fixed) SN feedback cold gas ejection power-law amplitude 0 0. 0.0
15 Bey (fixed) SN feedback cold gas ejection power-law index 0.0 0.0
16 fme (fixed) major merger minor merger threshold 0.3 0.3




the Croton model (Croton et al. 2006). We choose narrow fmr parameters that do not affect
the predictions. These include the power-law dependenteeastar formation efficiency on the
halo circular velocity. For these cases, we set the priortadnsistent with the existing models
(Croton model, in particular).

The marginalized posterior distribution of key parameferseach of the models is shown in
Figure 5, 6, and 7 (respectively). Clearly, some are onlyklyeeonstrained. For exampley, the
efficiency of SN feedback for powering galactic wind, is Wgasonstrained by the stellar mass
function. In addition to that, we see some parameters aoagir correlated. For example, the
Bss—BrH, 0ry—1BrH, andM—fpr dimensions. These correlations are understandable in the
context of CDM based galaxy formation models. To suppressstar formation in small halos,
either the star formation rate must be intrinsically smaltre SN feedback must be enhanced to
keep these systems from active star formation. The postéistribution of B—pry implies
either a sharply declining star formation efficiency agesamsall halo mass or a steep SN feedback
reheating halo mass dependence. The distributiakr@f—frH, the two parameters in the power-
law formalism for the SN feedback reheating model, are gisotorrelated. Finally, the correlation
Mcc and fpr implies that sufficient numbers of massive galaxies reqgitteer rapid merging with
little hot-gas cooling or slow merging but rapid hot-gaslowp

On the other hand, some parameters are tightly constranételbstellar mass function. Figure
5 reveals a sharp turn-over halo circular velocityX60km/s) in the star-formation efficiency law.
In other words, the star formation efficiency must decrebsepdy with decreasing halo mass. The
parametersis= andPry, are also tightly constrained. We find higher values for ¢hesrameters
(6 for Bs= and 8 forBry) than found in early SAM results.

In Model 1, we choose a narrow pripr0.2,0.2] for Bsr consistent with published SAM inves-
tigations (e.g. Croton et al. 2006 use O for this parametased on Model 0, we apply narrow
Gaussian priors for 10gsg ~ N(2.2,0.02), based on observational evidence of a star-formation
threshold at approximately 10 pc® we choose logsr ~ N(1.0,0.03). Figure 6 shows the pos-
terior distribution. We note the following differences.rstj a quick comparison with Figure 5
shows the effect of the narrow priors improves the conssamother dimensions. For example,
we have constrained the star formation law to have shallg»ni@ence on halo mass dependence.
Therefore, the SN feedback reheating is forced to be a stewpidn

Previous studies have concluded that the SAMs over prdtdatamber of small galaxies when
star-formation efficiency is a shallow function of halo masst the fit remains “reasonable.” Is
a “reasonable” fit maintained in a high-dimensional par@mspace keeping the star formation
and SN feedback power-laws flat? To address this, we furttieaanarrow prior for the parameter
Bru € [—0.2,0.2]. Figure 7, shows the results. The mode moves dramaticalfyrespect to Model
1. To compensate for the weaker SN reheating in small halesadthe flat SN feedback reheating
law, the model increases the reheating and wind (the modsgonly — logew plane moves from
the lower-left corner to the upper-right corner). The shafihe correlation between lagy and
logary obtained in this inference is similar to the results of Hgues et al. (2008) using Croton
model sy andary in our model are equivalent &,50 andegisk in Croton model).

From these simple examples, we conclude that a pinning angdea without prior information
leads to a spurious inference. Since many of the parameteaelated, inappropriately fixing
one parameter will unrealistically constrain to other pagters.



4 Star count analyses

With deep data sets of asymptotic giant branch (AGB) stars fnearby galaxies such as the Large
and the Small Magellanic Clouds (LMC and SMC, respectivatypdeling their structure using
theoretical models of stellar evolution has become feasifthe Magellanic Clouds are particularly
good candidates for such modeling given their proximitynMilky Way and given that extinction
towards the Clouds is small and their stars are very wellveso

Color—-magnitude diagrams (CMDs) produced from isochrafsgellar evolution models, com-
bined with age—metallicity relations and a model of the gals stellar structures are used as input
data (prior) for the Bayesian Inference machinery.

4.1 Generating CMDs from Isochrones

As a first step, the generation of CMDs from sets of theorkiscechrones was solved. This step
turned out to be more way more involved than anticipatecefBritheoretical isochrones, available
at five different metallicities (see Cioni et al. 2006) weeed, using a sequence of interpolations
(in stellar mass, metallicity, and age). On top of that,-dtamation rate (SFR) histories (SFRHs)
and age—metallicity relations (AMRSs) had to be provide@ (Bagel & Tautvaisiene 1998, Carrera
et al. 2008). The initial mass function (IMF) is assumed tortskependent of age and equal to the
log—normal function of Chabrier (2001).

The combination of these ingredients produce CMDs for sessans within the desired ranges
of age and metallicity. These CMDs then have to be convolvéidavmodel of the structure of the
galaxy (incl. a realistic treatment of extinction towarlle tine—of—sight of the galaxy) to produce
full model CMDs that can be compared with observed ones. Xisieg BIE machinery already
included a very simple model for the different ingrediemigidhe different parts had to be replaced
with the more sophisticated new model generator.

4.2 Integration with BIE

After a very stringent set of tests the CMD generator wagynatied with the existing Bayesian
Inference machinery. Unfortunately, the CMD generator aginally coded in C, whereas BIE
uses a very elegant version of C++, which resulted in a wharies of necessary re—writes, bugs
(some of which took quite a while to find) and bug fixes.

In addition, several parts of the CMD generator turned obettoo slow and had to be optimized.
In the first version of the modeling, a set of stars with fixe@REE and AMRs is being used as input
data for the BIE, which uses a simple model for the galaxycstine (varying different structure
parameters). In the original version of the code, queryiegdet of stars (which BIE does many
times) took over 300 seconds for a sample of about forty thiodistars. This turned running a
single step inside BIE into a major endeavor and made runaingglistic BIE simulation with
thousands of steps prohibitively expensive.

After a very intensive study of data structures, the newiwarsf the code now takes a few
seconds for the same operation (very detailed tests of sudtseensured that the routine returns the
correct data). Furthermore, the code has been expandedliteerading previously generated data
sets from disk, which, for the aforementioned sample ofyftitbusand stars, eliminates another
twelve hundred seconds of time. Ten minutes might not seethalmuch, but it becomes very



relevant especially in the debugging and early developpleste. The CMD generator is now fully
integrated, optimized, and tested to run with BIE.

4 Milestones for the final period

1. Statistical & MCMC development

e Continued testing and exploration of novel techniquesdprd improvement of mixing
and convergence for high-dimensional complex posterisiridutions typical of real-
world astronomical problems.

e We will provide qualitative suggestions and wisdom for csiog various MCMC al-
gorithms and diagnostic procedures, a suite of exampleiscoele, and complete docu-
mentation.

2. GALPHAT

e We will finish the GALPHAT performance tests including budge-disk analysis, using
simulated galaxies and finish theaGPHAT methods paper (Yoon et al. 2009)

e We willimplement a Minimum Covariance Determinate Estiandbr calculating Bayes
factors and characterize the power of BIE in model compafgoblem using simulated
galaxy images.

e We will synthetically sample single Sérsic galaxies frordistribution of parameter
space (e.g. luminosity function, Sérsic index distribati galaxy size distribution).
From these galaxy samples, we will derive posterior distrdms using different priors
and compare the result to the input distribution of simwagalaxy population. This
will enable us to access the importance of prior for galaxggmanalysis and provide
guidance to future users.

e We will complete the analysis of (approx. 500) of 2MASS sanming G LPHAT and
derive structural properties, which will be compared tovpresly published observa-
tions including, but not limited to bulge-disk ratio, matyrde-size relation, observed
distribution of size and Sérsic index. Informed by thessults, we will proceed to
analyze the full sample of 2000 2MASS galaxy images.

3. Semi-analytic models

e The error in stellar mass function includes the counting@an each stellar mass bin
and the systematic uncertainties that are correlated acrbs$seabins. In particular,
the uncertainties of the stellar population synthetic nhodlich is used to estimate
the stellar mass from the observed stellar light, affeatsetfitire stellar mass function.
We will explore the more direct alternative approach: pradg luminosity function
directly from the model and use the observed luminosity tionc



e We will implement the newest stellar population synthesedet (BC07), which in-
corporates the thermally pulsing AGB star into the model aodk with the K-band
luminosity function.

e We will explore the sensitivity to the CB07 and BC03 modeld anticipate an analysis
using Bayes factor model selction.

e Luetal. (inprep.) has demonstrated that the model recgrasdliative cooling predict
different cooling rate because of their different implenagion, and more importantly,
none of the existing model predict cooling rate agree witinent SPH simulation. The
models in general under predict the cold model accretiosrwall halos and over pre-
dict cooling rate in massive halos. Lu et al. has proposedvenmedel that incorporates
cold mode accretion explicitly into SAM. We are planningngplement the new model
into the BIE-SAM study. Using observations as stellar masstion HI mass function
etc., we can study if the cold model accretion is significastipported by observation.

4. Star count analyis

¢ We will test more complex galaxy structure models in additmthe simple exponential
disk model used to date.

e A realistic model for extinction towards the SMC/LMC is ady included in the mod-
ule and is thus not required. We will explore generalizaitor other nearby galaxies.

e Once all model parts are production ready, with realistiocitire models will start to
model the structure of the LMC and SMC. We anticipate minorknaam optimizing the
calculation of the spatial domain, but the other model conepds are fully optimized
and thoroughly tested. Once the mechanism has been sudbeapplied to either the
LMC or SMC, applying it to other galaxies requires no addiibwork. We anticipate
astronomical results and a paper by the end of the extendadi goeriod.
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Figure 1. Parameter residual as a function of SN. From leftgiot and upper to lower, magni-
tude residual(output-input), half-light radius scalediyyut value, Sérsic index residual, axis ratio
scaled by input value, position angle residual, sky residiaery SN bin contains 100 galaxies
with different input structural parameters; input haffHt radius is uniform in 6-14 pixel, input
axis ratio is uniform in 0.1-1.0, input Sérsic index is wmif in 0.7-7.0, position angle is uniform
in 0-90. SN bin is 5.0, 10.0, 20.0, 50.0, 100.0 each. chayeced| blue boxes include 68.3, 95.4,
99.73% confidence interval corresponding 1,2,3 sigma. Aosisas posterior median and two bars
at the end is min and max of data. PSF FWHM is 2.96, far largen the minimum half-light
radius of galaxies.
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Figure 5: The marginalized posterior distribution of sonagmeters for Model 0. The color
coding represents certain confident level as shown in thengagor-bar. The horizontal bars in the
1-Dimensional marginalized posterior distribigions aave 95% confident range.
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Figure 6: The marginalized posterior distribution of sonaegmeters for Model 1. Note that the
parameterds=, Ve= andZ s, in the upper triangle are assigned to have narrow priors.
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Figure 7: The marginalized posterior distribution of sonaegmeters for Model 2. Note that the
parameterd}s, V=, 25 andPry, in the upper triangle are assigned to have narrow priors.
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